Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton.
نویسندگان
چکیده
Lack of physical activity causes bone loss and fractures not only in elderly people, but also in bedridden patients or otherwise inactive youth. This is fast becoming one of the most serious healthcare problems in the world. Osteocytes, cells buried within our bones, stimulate bone formation in the presence of mechanical stimuli, as well as bone degradation in the absence of such stimuli. As yet, we do not fully comprehend how osteocytes sense mechanical stimuli, and only know a fraction of the whole range of molecules that osteocytes subsequently produce to regulate bone formation and degradation in response to mechanical stimuli. This dramatically hampers the design of bone loss prevention strategies. In this review we will focus on the first step in the cascade of events leading to adaptation of bone mass to mechanical loading, i.e., on how osteocytes are able to perceive mechanical stimuli placed on whole bones. We will place particular emphasis on the role of the osteocyte cytoskeleton in mechanosensing. Given the crucial importance of osteocytes in maintaining a proper resistance against bone fracture, greater knowledge of the molecular mechanisms that govern the adaptive response of osteocytes to mechanical stimuli may lead to the development of new strategies towards fracture prevention and enhanced bone healing.
منابع مشابه
Osteocyte morphology in fibula and calvaria --- is there a role for mechanosensing?
INTRODUCTION External mechanical forces on cells are known to influence cytoskeletal structure and thus cell shape. Mechanical loading in long bones is unidirectional along their long axes, whereas the calvariae are loaded at much lower amplitudes in different directions. We hypothesised that if osteocytes, the putative bone mechanosensors, can indeed sense matrix strains directly via their cyt...
متن کاملIn vitro and in vivo study on osteocyte-specific mechanical signaling pathways.
Mechanical loading of bone results in various osteogenic stimuli, including new bone formation as well as repair. In this process, osteocytes which are derived from osteoblasts are critical for communicating and sending signals to other bone cells through gap junctions with their dendritic processes to initiate bone remodeling. It is speculated that the history of weight bearing affects long-te...
متن کاملBiological underpinnings of Frost's mechanostat thresholds: the important role of osteocytes.
Harold Frost first proposed the existence of several mechanical thresholds in bone, two of which determine whether bone is added to, or lost from, the skeleton. Recent evidence from bone biology helps elucidate the role of osteocytes in determining these mechanical thresholds. Specifically, when mechanical stimuli fall below the resorption threshold, osteocyte apoptosis occurs, followed by bone...
متن کاملSkeletal adaptation to mechanical stimuli in the absence of formation or resorption of bone.
Too often, unique loading environments fail to alter bone mass and morphology, calling to question the validity of Wolff's Law; the skeleton's plasticity to mechanical signals(1). We propose that bone can accommodate new loading environments without the need to form or resorb tissue, and that a critical aspect of bone tissue's ability to adapt to mechanical stimuli is first achieved via the pla...
متن کاملOsteocyte Shape and Mechanical Loading
There is considerable variation in the shape of osteocyte lacunae, which is likely to influence the function of osteocytes as the professional mechanosensors of bone. In this review, we first discussed how mechanical loading could affect the shape of osteocyte lacunae. Recent studies show that osteocyte lacunae are aligned to collagen. Since collagen fiber orientation is affected by loading mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European cells & materials
دوره 24 شماره
صفحات -
تاریخ انتشار 2012